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Current injection by coherent one- and two-photon excitation in graphene and its bilayer
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Coherent control of optically injected carrier distributions in single and bilayer graphene allows the injection of
electrical currents. Using a tight-binding model and Fermi’s golden rule, we derive the carrier and photocurrent
densities achieved via interference of the quantum amplitudes for two-photon absorption at a fundamental
frequency, ω, and one-photon absorption at the second harmonic, 2ω. Strong currents are injected under co-circular
and linear polarizations. In contrast, opposite-circular polarization yields no net current. For single-layer graphene,
the magnitude of the current is unaffected by the rotation of linear-polarization axes, in contrast with the bilayer
and with conventional semiconductors. The dependence of the photocurrent on the linear-polarization axes is
a clear and measurable signature of interlayer coupling in AB-stacked multilayer graphene. We also find that
single and bilayer graphene exhibit a strong, distinct linear-circular dichroism in two-photon absorption.
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I. INTRODUCTION

The successful isolation of a single graphene sheet1,2

has sparked an intense research area around its unusual
electronic and optical properties. Carriers in graphene obey
Dirac’s equation, resulting in an electronic energy-momentum
dispersion that is linear, with intersecting electron and hole
bands.3–5 At optical frequencies, the absorption per layer
through a graphene stack is quantized in an amount written
in terms of universal constants.6

Bilayer graphene has also garnered significant interest due
to its quite different but equivalently interesting electronic
properties. The carriers in clean, unbiased bilayer graphene
obey a massive Dirac equation; their band dispersion is gapless,
quadratic at low energy, and linear at high energy.7,8

Both single and bilayer graphene are characterized by
carrier mobilities that are extremely high.1,9 Their high optical
conductivity and high carrier mobilities mean they could see
applications as optically controlled transport devices.

For a level system subjected to coherent irradiation at a
fundamental frequency and its �th harmonic, the quantum
interference of one- and �-photon absorption pathways allows
the coherent control (CC) of the excitation process. This
quantum interference control technique has been widely
used to study systems ranging from molecules to bulk and
quantum well materials.10 For crystalline materials, where
initial and final states are described by Bloch states, an
often-studied method is the use of fundamental and second-
harmonic frequencies. The two equivalent pathways consist
of two-photon absorption of the fundamental and one-photon
absorption of the second harmonic. The cross term of the
transition amplitudes contributes to an asymmetrical distribu-
tion of injected carriers through reciprocal space, yielding a
nonzero current density. The k-space distribution is controlled
by attributes of the two coherent components of the light
field: their polarization and a relative phase parameter.11 In
graphene, the interference effect for linearly polarized light has
been predicted to be significantly stronger than in conventional
semiconductors.12 Photocurrent CC has been demonstrated
experimentally in multilayer epitaxial graphene,13 carbon
nanotubes, and graphite.14

In this paper, the tight-binding model of graphene near the
Dirac point is used to calculate the distributions of carriers
optically injected by simultaneous irradiation with light at a
frequency ω and light at its second harmonic frequency 2ω.
We find that the coherent adjustment of phase parameters and
polarizations yield a photocurrent for linearly and co-circularly
polarized light. The results for one and two layers of graphene
are contrasted, and we argue that interlayer coupling could be
probed in a Bernal stack of graphene sheets.

The paper is organized as follows. The effective Hamil-
tonians used for the calculations are presented in Sec. II.
One- and two-photon absorption coefficients in single-layer
graphene, the resulting distributions of injected carriers, and
the generated photocurrents due to interference are presented
in Sec. III; these results hold as well for the low-energy
expansion of bilayer graphene. The full treatment of the
bilayer and the effects of interlayer coupling on two-photon
absorption and photocurrent injection are presented in Sec. IV.
We summarize and discuss our results in Sec. V.

II. HAMILTONIANS

Single-layer graphene (henceforth simply graphene) is
a one-atom-thick layer of carbon atoms arranged in two
triangular sublattices {A, B}, as shown in Fig. 1(a). In the
basis of the sublattices, the tight-binding model is expanded
near the K point to yield the effective Hamiltonian

H1(K + k) → h̄vF σ · k = vF

(
0 h̄k−

h̄k+ 0

)
, (1)

where vF is the Fermi velocity, σ are the Pauli matrices, k
is the crystal momentum in the plane of the crystal relative
to the K point and k± = kx ± iky . The Fermi velocity can be
expressed in terms of the sublattice hopping term γ0.5 The
resulting band energies are linear in crystal momentum k and
are shown in Fig. 2.

The structure of Bernal-stacked bilayer graphene is
sketched in Fig. 1(b); there are four atoms per unit cell, each
contributing a pz orbital to the π bands.15 The corresponding
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FIG. 1. (Color online) Crystal structure of (a) single-layer
graphene and (b) bilayer graphene. The basis vectors a1 and a2 define
the unit cell, γ0 and γ1 are the intralayer and interlayer coupling
strengths, and the sublattices are denoted by A (A′) and B (B′).

4 × 4 tight-binding Hamiltonian, written in the basis {A, B′,
A′, B} and expanded near the K point, is given by

H2(K + k) →

⎛
⎜⎝

0 0 0 vFh̄k−
0 0 vFh̄k+ 0
0 vFh̄k− 0 γ1

vFh̄k+ 0 γ1 0

⎞
⎟⎠ . (2)

This tight-binding model includes γ0, the intralayer coupling,
and γ1, the hopping term between sublattices A′ and B from
the two different layers. A low-energy expansion yields

H ′
2(K + k) → − h̄2

2m

(
0 k2

−
k2
+ 0

)
, (3)

where m = γ1/2v2
F . This is the “massive” Dirac equation,

describing the carriers near the K point for |vFh̄k| � γ1. The
energy dispersion consists of a pair of gapless conduction and
valence bands touching at the Dirac point (k = 0), with a
quadratic dependence on crystal momentum.4,5

Near the K ′ point, similar Hamiltonians are obtained by
letting kx → −kx in Eqs. (1)–(3); for the purposes of this
paper, the two valleys are equivalent.

Γ
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FIG. 2. (Color online) Reciprocal space and linear energy-crystal
momentum dispersion of graphene near K. The basis vectors b1

and b2 form the reciprocal unit cell, enclosing one K and one K ′

valley. The dispersion shows the initially empty conduction band c

and occupied valence band v touching at the K point. The excitation
scheme employs interference between two-photon absorption at ω

(red arrows) and one-photon absorption at 2ω (blue arrows), leading
to generation of charge and current.

III. SINGLE-LAYER GRAPHENE

In this section, we use Eq. (1) to calculate one- and two-
photon absorption coefficients, and the CC of chiral carriers in
graphene. The velocity operator v = 1

h̄
∇kH , when written in

the eigenstates basis, takes the form

v → vF

(
k̂ iφ̂

−iφ̂ −k̂

)
, (4)

where k̂ is the unit vector parallel to the direction of k and
φ̂ = ẑ × k̂.

A. Carrier injection

We calculate the rate of change of the carrier density due
to an interaction Hamiltonian Hint = − e

m0c
A · p, where A is

the vector potential of the optical field, m0 is the free-electron
mass, c is the speed of light in vacuum, and e = −|e| is the
electron charge, by performing a perturbation calculation up to
second order. Assuming a monochromatic field of frequency
ω, we obtain expressions for the rate of injection of carrier
density due to one- and two-photon absorption processes
(using the Gaussian system of quantities and cgs units
throughout):

ṅ1 = ξab
1 (ω)Ea∗(ω)Eb(ω), (5)

ṅ2 = ξabcd
2 (ω)Ea∗(ω)Eb∗(ω)Ec(ω)Ed (ω), (6)

where E is the electric field and superscripts a, b, c, and d indi-
cate Cartesian components; repeated superscripts are summed
over. Microscopic expressions for the tensors ξ1 and ξ2 are
derived in the independent-particle approximation following
Fermi’s golden rule (FGR).11,16 For a two-dimensional crystal,
we have

ṅ� = 2π
∑
c,v

∫
d2k

4π2

∣∣�(�)
cv (ω,k)

∣∣2
δ[ωcv(k) − �ω], (7)

where ωcv(k) ≡ ωc(k) − ωv(k), h̄ωm(k) are the band energies,
and �(�)

cv (ω,k) is the �-photon transition amplitude between
valence band v and conduction band c at wave vector k16:

�(1)
cv (ω,k) = ie

h̄ω
vcv(k) · E(ω), (8)

�(2)
cv (ω,k) = 2e2

h̄2ω2

∑
m

vcm(k)·E(ω) vmv (k)·E(ω)
ωmc(k) + ωmv(k) , (9)

where vmn(k) indicate matrix elements of the velocity operator,
and [ωmc(k) + ωmv(k)]/2 = ωm(k) − [ωv(k) + ω] is the usual
energy denominator appearing in second-order perturbation
theory.

By the symmetry of graphene and bilayer graphene, the
tensors ξ1 and ξ2 have respectively one and three nonzero
independent components in the xy plane: ξxx

1 , ξxxxx
2 , ξ

xxyy

2 ,
and ξ

xyxy

2 = ξ
xyyx

2 ; however, all our model Hamiltonians are
isotropic, reducing ξ2 to two independent terms: ξxxxx

2 and the
linear-circular dichroism δ = ξ

xxyy

2 /ξxxxx
2 .17

The electric field E(ω) in an arbitrary beam at normal in-
cidence can be written as E(ω) = Eωeiϕω (x̂ω + ŷωeiδϕω )/

√
2,

for an appropriate choice of orthonormal vectors x̂ω and ŷω in
the xy plane, a real amplitude Eω, and real phase parameters
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ϕω and δϕω. The injection rates of the carrier density due to
one- and two-photon processes are given by

ṅ1 = ξxx
1 (ω) |Eω|2 , (10)

ṅ2 = ξxxxx
2 (ω) |Eω|4 [

1 − δ sin2(δϕω)
]
. (11)

Both are insensitive to rotation of the crystal axes with respect
to the normal, but one-photon absorption is independent
of polarization, while two-photon absorption depends on
the phase difference δϕω between the linearly polarized
components of the incident light.

For the linear response, we find from Eq. (1) that ξxx
1 ≡ ξ̄1,

with

ξ̄1(ω) = 2σ0/h̄ω, (12)

where σ0 is the universal optical conductivity of graphene:
σ0 = gsgv

e2

16h̄ , with gs = 2 and gv = 2 denoting spin and valley
degeneracy, respectively.6,18 For the two-photon process we
find ξxxxx

2 = ξ
xyxy

2 = ξ
xyyx

2 = −ξ
xxyy

2 ≡ ξ̄2, with

ξ̄2(ω) = 8gsgvh̄e4v2
F (2h̄ω)−5 . (13)

Thus, for chiral carriers, δ = −1 and it follows from Eq. (11)
that circularly polarized light (δϕω = ±π

2 ) provides twice as
much two-photon absorption as linearly polarized light.

B. Quantum interference of fundamental and second
harmonic components

In the presence of a two-color optical field with frequency
components ω and 2ω, there exist two transition amplitudes
connecting the same initial and final states: �(1)

cv (2ω,k) results
from light at 2ω to first order in perturbation, and �(2)

cv (ω,k)
results from light at ω to second order in perturbation. The
cross term of these amplitudes yields the CC term. Although
this has no effect on the total number of carriers optically
injected in centrosymmetric crystals,19 it yields an injection
term for the current density. This term has the form

J̇ a = ηabcd
I (ω)Eb∗(ω)Ec∗(ω)Ed (2ω) + c.c., (14)

where ηI (ω) is a fourth-rank current-injection tensor.11 The
symmetry of graphene or bilayer graphene yields ηxxxx

I ,
η

xyyx

I , and η
xyxy

I = η
xxyy

I as independent components; an
isotropic model has 2η

xyxy

I = ηxxxx
I − η

xyyx

I .20,21 We introduce
a disparity parameter d = η

xyyx

I /ηxxxx
I to characterize how the

current injection due to linearly polarized beams depends on
whether the polarization axes are perpendicular or parallel:

J̇ = ηxxxx
I (ω)(E∗(ω)[E∗(ω) · E(2ω)]

−d E∗(ω) × [E∗(ω) × E(2ω)]) + c.c. (15)

From Eq. (1) we find that the nonzero components of
the current-injection tensor are related by ηxxxx

I = η
xyxy

I =
η

xxyy

I = −η
xyyx

I ≡ iη̄I , and thus d = −1. In the independent-
particle approximation, η̄I is purely real. An FGR derivation
predicts equal conduction- and valence-band contributions, for
a total current injection

η̄I (ω) = gsgve
4v2

F (2h̄ω)−3 . (16)

We describe ω and 2ω beams at normal incidence by the
choice of fields E(ω) = Eωeiϕω êω and E(2ω) = E2ωeiϕ2ω ê2ω,

where êω/2ω = (x̂ω/2ω + ŷω/2ωeiδϕω/2ω )/
√

2, describing two ar-
bitrary normal-incidence beams. We find that co-circularly po-
larized beams (δϕω = δϕ2ω = ±π

2 ) yield the current injection
with the largest magnitude:

J̇ = 2
√

2η̄I (ω)E2
ωE2ω m̂, (17)

where m̂ = x̂2ω sin(ϕ ∓ 2θ ) ± ŷ2ω cos(ϕ ∓ 2θ ). The
phase-difference parameter ϕ ≡ 2ϕω − ϕ2ω controls the
direction of the current; θ is the angle that separates the
polarization axes of the fundamental from those of the second
harmonic: x̂ω = x̂2ω cos θ + ŷ2ω sin θ . Opposite-circular
polarizations (−δϕω = δϕ2ω = ±π

2 ) yield no net current
injection, while linearly polarized beams (δϕω = δϕ2ω = 0)
yield

J̇ = 2η̄I (ω)E2
ωE2ω sin(ϕ) n̂, (18)

where n̂ = ê2ω cos(2θ ) + ê⊥
2ω sin(2θ ) and ê⊥

2ω = ẑ × ê2ω. Here
the angle θ between polarization axes controls the orientation
of the current within the graphene plane, and ϕ controls
its magnitude. For co-linearly polarized and cross-polarized
beams, the injected current is parallel with the direction of ê2ω,
the polarization axis of the second harmonic. Conversely the
injected current is perpendicular to ê2ω when the polarization
axes form an angle of θ = π

4 . Within this model, the orientation
of the crystal axes has no influence on the current injection at
normal incidence.

Graphene seems to be the first material that has been studied
for which any value of θ is equally effective at injecting
a current. This is in contrast to materials such as GaAs,
where one finds |ηxyyx

I | � |ηxxxx
I |, and thus a configuration

with perpendicular polarization axes results in a significantly
weaker current.11,20,21

Figure 3 shows the k-space distribution of the carrier-
injection rate, ṅ(k) = |�(1)

cv (2ω,k) + �(2)
cv (ω,k)|2, at ωcv(k) =

2ω. Field amplitudes are chosen such that the integrated
injection rates from one- and two-photon processes are
balanced: ṅ1(2ω) = ṅ2(ω). Opposite-circular polarization of
the beams yields the nonpolar distribution in Fig. 3(a) and no
net current. In Fig. 3(b) both components of the two-color field
have the same circular polarization σ±. The carrier distribution
follows ṅ(k) ∝ 1 + sin(ϕ ± φk), where φk = tan−1(ky/kx),
resulting in the injection of the current given by Eq. (17). The
charge distribution and current rotate with ϕ: clockwise for
σ+ and counterclockwise for σ−, when viewed from z > 0.

In Figs. 3(c) and 3(d) we show the k-space distribution of the
carrier-injection rate for linearly polarized light; without loss
of generality, ê2ω is taken along the x axis: ê2ω = x̂ and êω =
x̂ cos θ + ŷ sin θ . Taking the phase-difference parameter to be
ϕ = π

2 , we maximize both the cross term in the k-dependent
carrier density, ṅ(k) ∝ | sin φk + ie−iϕ sin(2φk − 2θ )|2, and
the resulting current, Eq. (18). For co-linear polarization axes
as in Fig. 3(c), the distribution is symmetric with respect to
ky , while asymmetric and strongly enhanced toward positive
kx , although with a node at φk = 0. The excess of positive-kx

carriers gives rise to a net electric current along the x axis. As
the polarization axis of the ω component is rotated by the angle
θ , carriers are redistributed toward positive ky . At θ = π

4 , ṅ(k)
is symmetric with respect to kx and the net current is along the
y axis [Fig. 3(d)].
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FIG. 3. (Color online) Distribution ṅ(k) of the carrier injection
through reciprocal space under irradiation by an optical field with
components E(ω) and E(2ω) satisfying ϕ = π

2 . (a) Opposite-
circular polarization (−δϕω = δϕ2ω = ± π

2 , θ = 0). (b) Co-circular
polarization (σ± light, δϕω = δϕ2ω = ± π

2 , θ = 0). (c), (d) Linear po-
larization (δϕω = δϕ2ω = 0) with ê2ω = x̂ and êω = x̂ cos θ + ŷ sin θ ;
(c) θ = 0 and (d) θ = π

4 . The distribution in (a) results in no net
current; the asymmetric distributions [(b)–(d)] result in net electrical
currents injected in the graphene plane along x̂ [(b), (c)] or ŷ (d).

IV. BILAYER GRAPHENE

The chiral Hamiltonian for bilayer graphene, Eq. (3), results
in the same carrier and current injection as in the previous
section if we replace ξ̄1 → 2ξ̄1, ξ̄2 → 8h̄ωξ̄2/γ1, and η̄I →
8h̄ωη̄I /γ1; the velocity operator in the eigenstates basis takes
the form of Eq. (4) with vF → h̄k/m, and thus the symmetry
properties of the injection tensors are unchanged. But such
a treatment describes the carriers only near the K point for
|vFh̄k| � γ1 and leaves out important remote bands in the
two-photon transition amplitude. A more accurate model is
given by Eq. (2), which is also valid for band energies on the
order of γ1. This 4 × 4 Hamiltonian introduces two additional
bands, one above and one below the Dirac point, shifted by
an energy γ1. More importantly, it gives the correct linear
dispersion for larger values of k. The band dispersion near K
is shown in Fig. 4.

A. Carrier injection

Starting from Eq. (2), in this section we repeat the previous
injection-tensor calculations for the unbiased Bernal-stacked
graphene bilayer. The one-photon carrier injection of bilayer
graphene is obtained from Eq. (12) by replacing σ0 with the
bilayer optical conductivity σ from Abergel and Fal’ko.22

We break down the two-photon carrier injection into four
distinct contributions. The first (a) comes from absorption by
the gapless doublet (leftmost transition in Fig. 4, denoted
GLT). The second and third contributions arise from injec-
tion involving exactly one split-off band and contain either
(b) only two-band or three-band amplitudes and no cross term,

v1

v2

c1

c2

K (K )
kE

ne
rg

y

γ1

γ1

{v1,v2,c1,c2}

ω

ω

GLT

{v2,c2}

ω

ω

2BT

{v1,c1}

ω

ω

3BT

{v1,v2,c1,c2}

ω

ω

SOT

'

FIG. 4. (Color online) Band dispersion of bilayer graphene and
breakdown of the transition amplitudes for two-photon absorption.
Bands v1 and v2 are valence bands and initially filled; c1 and c2 are
initially empty conduction bands. Bands v2 and c1 form a gapless
doublet touching at the K point; c2 and v1 are split-off bands shifted
by an energy γ1 above and below the gapless doublet, respectively. All
bands are quadratic near K and linear at larger k. Transition amplitudes
appear in four variants: (i) the gapless term (GLT) between bands v2

and c1, (ii) two- and (iii) three-band terms involving exactly one
split-off band (2BT and 3BT, respectively), and (iv) the split-off term
(SOT) between bands v1 and c2. The notation {...} next to a virtual
state indicates that the sum in Eq. (9) is restricted to m ∈ {...}. Not
shown are the 2BT and 3BT between bands v1 and c1.

or (c) cross terms of two- and three-band amplitudes; two- and
three-band amplitudes are denoted 2BT and 3BT in Fig. 4.
The fourth contribution (d) comes from absorption where
initial and final states are split-off bands (SOT in Fig. 4). The
nonzero tensor components are obtained from the symmetry
of the matrix elements involved for each contribution, which
yields

ξxxxx
2 (ω) = ξ̄2a(ω) + [

3ξ̄2b(ω) + ξ̄2c(ω)
]
�(2h̄ω − γ1)

+ξ̄2d (ω) �(2h̄ω − 2γ1), (19a)

ξ
xxyy

2 (ω) = −ξ̄2a(ω) + [
ξ̄2b(ω) + 3ξ̄2c(ω)

]
�(2h̄ω − γ1)

−ξ̄2d (ω) �(2h̄ω − 2γ1), (19b)

where �(x) is the Heaviside step function. The matrix
elements appearing in ξ̄2a and ξ̄2d have the same symmetry
as those appearing in graphene. However, the contributions
involving exactly one split-off band (b, c) break the graphene
result of δ = −1. Indeed, if one defines a partial linear-
circular dichroism δi = ξ̄

xxyy

2i /ξ̄ xxxx
2i for each contribution

i ∈ {a,b,c,d}, it follows that δa = −1, δb = 1
3 , δc = 3, and

δd = −1. The total linear-circular dichroism will depend on
the relative strength of the contributions ξ̄2a–d , which we now
address.
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In computing �(2)
cv (ω,k) for the bilayer, a difficulty arises

since it is possible for the energy denominator inside the sum
in Eq. (9) to become exactly zero. Take for example the top
valence band as initial state v and the second conduction
band as final state c. When the intermediate state m is the
first conduction band, there exists a value of k such that
h̄ωm(k) = 1

2γ1; at this k the intermediate state lies precisely in
between the initial and final states. This leads to a resonance
in the calculated response functions at h̄ω = γ1. To avoid this
resonance, we let ωm → ωm + i�/2h̄ in Eq. (9). The linewidth
� accounts phenomenologically for dephasing due to actual
population of the intermediate state. Other linewidths could be
added to describe the effects of disorder or interactions, but for
values � � we find that their inclusion does not significantly
modify our results.

With ξ̄2(ω) given in Eq. (13), we have

ξ̄2a (ω) = ξ̄2(ω)
2h̄ω (2h̄ω + 3γ1)2

(2h̄ω + γ1) (2h̄ω + 2γ1)2 , (20a)

ξ̄2b (ω) = ξ̄2(ω)
2γ 2

1

(2h̄ω)2

(2h̄ω + γ1) (2h̄ω − γ1)

(2h̄ω + 2γ1)2

×
(

(2h̄ω + 2γ1)2

(2h̄ω)2 + (2h̄ω)2 + 1
4�2

(2h̄ω − 2γ1)2 + �2

)
,

(20b)

ξ̄2c (ω) = −ξ̄2(ω)
2γ 2

1

(2h̄ω)3 (2h̄ω + γ1) (2h̄ω − γ1)

×
(

1

2h̄ω + 2γ1
+ 2h̄ω − 2γ1

(2h̄ω − 2γ1)2 + �2

)
, (20c)

(a)

ξ̄ 2
a–

d
/ξ̄

2

0 2 4 6
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4

ξ̄2a

ξ̄2b
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ξ̄2d

(b)

ξ
ab

cd
2

/ ξ̄
2

0 2 4 6
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0

4

8

12

ξ xxxx
2

ξ xxyy
2

(c)

δ

0 2 4 6
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1

Γ = 0.45γ1

Γ = 0.35γ1

Γ = 0.25γ1

Γ = 0.15γ1

Photon energy (2h̄ω/γ1)

FIG. 5. (Color online) Quantities describing two-photon carrier
injection in bilayer graphene as a function of photon energy for
an intermediate-state linewidth �/γ1 = 0.35. (a) The individual
contributions ξ̄2a–d (a, plain red; b, long-dashed blue; c, short-dashed
green; d , dotted orange) from Eq. (20). (b) The independent nonzero
tensor components ξxxxx

2 (plain black) and ξ
xxyy

2 (dashed red) from
Eq. (19). (c) The linear-circular dichroism δ = ξ

xxyy

2 /ξxxxx
2 .

ξ̄2d (ω) = ξ̄2(ω)
2h̄ω (2h̄ω − 2γ1)2

(2h̄ω − γ1)3

×
(

1 − γ 2
1

(2h̄ω − 2γ1)2 + �2

)2

. (20d)

We graph the individual contributions ξ̄2a-d in Fig. 5(a) and
the resulting ξxxxx

2 and ξ
xxyy

2 components of the two-photon
carrier-injection tensor in Fig. 5(b). In contrast to the linear
absorption, where the limits of the bilayer response function
at low and high photon energies gave the graphene result times
a factor of 2,22 in the two-photon response function this “factor
of 2” rule does not hold at low photon energy: For h̄ω � γ1,
we find ξabcd

2(bilayer)(ω) → 9h̄ωξabcd
2(graphene)(ω)/2γ1. Further, using

Eq. (3) instead yields ξabcd
2(bilayer)(ω) → 8h̄ωξabcd

2(graphene)(ω)/γ1;
the discrepancy is explained since the derivation using
the 4 × 4 Hamiltonian includes important three-band terms
from the split-off bands in the two-photon transition ampli-
tude. At high photon energy ξabcd

2(bilayer)(ω) → 2ξabcd
2(graphene)(ω) as

expected.
Two features are apparent in the response tensor at the

thresholds for absorption into the split-off bands. The first
feature is a pronounced shoulder in both ξxxxx

2 and ξ
xxyy

2 at
2h̄ω = γ1 due to the onset of absorption involving one split-off
band. The second feature is the resonance which occurs at
2h̄ω = 2γ1. There the contributions ξ̄2b and ξ̄2c approximate
the real and imaginary parts of a complex Lorentzian function,
and contribute to a peak in ξxxxx

2 and a change of sign in ξ
xxyy

2 .
In Figs. 5(a) and 5(b) we have chosen the particular

value � = 0.35γ1 for the linewidth. We note that ξ̄2a is
independent of �, but ξ̄2b–d are not. However, the graph of
these quantities changes quantitatively but not qualitatively
when a different finite value is chosen for �. We plot the
linear-circular dichroism δ in Fig. 5(c) for different values
of �. It can be seen that � has very little effect on δ.
The graphene result (δ = −1) is reproduced for 2h̄ω < γ1

and 2h̄ω � 3γ1. For mid-frequencies, γ1 < 2h̄ω < 2γ1, the
dichroism increases (decreases) sharply at the first (second)
split-off band threshold; δ changes sign and has a maximum
value ∼0.5 near 2h̄ω = 1.5γ1.

B. Current injection

There are four contributions to the current-injection tensor
in bilayer graphene, outlined in Fig. 6: The first (a) comes
from absorption by the gapless doublet. The second and
third contributions arise from injection involving exactly one
split-off band, with the second-order amplitude containing
either (b) only two-band terms or (c) only three-band terms.
Transitions involving only the split-off bands make up the
fourth contribution (d). Each individual process involves
matrix elements of varying symmetry, and they contribute
differently to ηxxxx

I and η
xyyx

I : >

ηxxxx
I (ω) = iη̄Ia(ω) + [3iη̄Ib(ω) + iη̄Ic(ω)] �(2h̄ω − γ1)

+ iη̄Id (ω) �(2h̄ω − 2γ1), (21a)

η
xyyx

I (ω) = −iη̄Ia(ω) + [iη̄Ib(ω) + 3iη̄Ic(ω)] �(2h̄ω − γ1)

− iη̄Id (ω) �(2h̄ω − 2γ1). (21b)
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FIG. 6. (Color online) Diagrams of the four contributions η̄Ia–d

to the current injection in bilayer graphene [IV B].

The four contributions have dissimilar values of the parallel-
perpendicular polarization disparity parameter: da = −1, db =
1
3 , dc = 3, and dd = −1. Their magnitudes are given by

η̄Ia(ω) = η̄I (ω)
2h̄ω

(2h̄ω + γ1)2 (2h̄ω + 3γ1) , (22a)

η̄Ib(ω) = η̄I (ω)
2γ 2

1

(2h̄ω)2

(2h̄ω + γ1) (2h̄ω − γ1)

(2h̄ω)2 , (22b)

η̄Ic(ω) = −η̄I (ω)
γ 2

1 (2h̄ω + γ1) (2h̄ω − γ1)

(2h̄ω)3

×
(

1

2h̄ω + 2γ1
+ 2h̄ω − 2γ1

(2h̄ω − 2γ1)2 + �2

)
, (22c)

η̄Id (ω) = η̄I (ω)
2h̄ω

(2h̄ω − γ1)3 (2h̄ω − 2γ1)2

×
(

1 − γ 2
1

(2h̄ω − 2γ1)2 + �2

)
, (22d)

with η̄I (ω) given in Eq. (16).The parameters η̄Ia–d are plotted
in Fig. 7(a). The two independent components of ηI in the
isotropic model, ηxxxx

I and η
xyyx

I , are plotted in Fig. 7(b). In
the high-frequency limit, the current-injection tensor for the
bilayer tends to ηabcd

I (bilayer)(ω) → 2ηabcd
I (graphene)(ω). In the low-

frequency limit, we get ηabcd
I (bilayer)(ω) → 6h̄ωηabcd

I (graphene)(ω)/γ1,
in contrast to using the simple Hamiltonian of Eq. (3)
which neglects three-band terms in the second-order ampli-

(b)

I
m

[η
ab

cd
I

]/
η̄

I

0 2 4 6
-4

-2

0

2

4

η xxxx
I

η xyyx
I

(a)

η̄
Ia

–d
/η̄

I

0 2 4 6
-2

-1

0

1

2

η̄ Ia

η̄ Ib

η̄ Ic

η̄ Id

FIG. 7. (Color online) The current-injection tensor ηI in bilayer
graphene for an intermediate-state linewidth �/γ1 = 0.25. (a) The
four contributions η̄Ia–d from Eq. (22): Plain red, long-dashed
blue, short-dashed green, and dotted orange curves correspond to
components a, b, c, and d , respectively. (b) The tensor components
ηxxxx

I (plain black) and η
xyyx

I (dashed red).

tude and gave ηabcd
I (bilayer)(ω) → 8h̄ωηabcd

I (graphene)(ω)/γ1 (see the
start of Sec. IV).

For mid-frequencies, there is a sharp increase in ηI at the
first split-off band edge at 2h̄ω = γ1 and a sharp decrease at
the second edge at 2h̄ω = 2γ1. Two features are manifest as
a consequence of these split-off band edges: (i) In the region
γ1 < 2h̄ω < 2γ1 the η

xyyx

I component changes sign. (ii) For
2h̄ω � 2γ1 the ηxxxx

I component becomes very small.
The main difference between the current injection in

graphene and in the bilayer is the contribution of components
η̄Ib and η̄Ic, each with a vastly different value of the disparity
parameter: db = 1

3 and dc = 3 while in graphene d = −1.
In Fig. 8 we plot the frequency dependence of d in bilayer
graphene. The spectrum shows a constant −1 value from
zero frequency until a sharp increase at the first split-off band
edge at 2h̄ω = γ1; d rises with photon energy and eventually
switches sign. At the second split-off band edge at 2h̄ω = 2γ1,
d reverses sign abruptly; for the range 2γ1 < 2h̄ω � 3γ1 it
takes on large negative values as η

xyyx

I remains finite but ηxxxx
I

becomes small [cf. Fig. 7(b)]. The value of d tends to −1 at
higher photon energy.

We now consider current injection in bilayer graphene
under irradiation by ω and 2ω beams at normal incidence.
Choosing the electric fields E(ω) and E(2ω) as in the
previous section, the current injection is given for co-circular
polarization of the beams (δϕω = δϕ2ω = ±π

2 ) by

J̇ = (1 − d)
√

2Im
[
ηxxxx

I

]
E2

ωE2ωm̂ (23)

and for opposite-circular polarization (−δϕω = δϕ2ω = ±π
2 )

by J̇ = 0. In Eq. (23), the disparity parameter d only affects
the magnitude of the current. In contrast, for linearly-polarized
ω and 2ω beams (δϕω = δϕ2ω = 0) forming an angle θ

between their polarization axes, different values of d lead to
injected currents with different magnitudes but also with vastly
dissimilar angular dependencies:

J̇ = 2Im[ηxxxx
I ]E2

ωE2ω sin(ϕ)

×
[
f (θ,d) ê2ω + g(θ,d) ê⊥

2ω

]
, (24)

where f (θ,d) = cos2 θ + d sin2 θ and g(θ,d) = 1
2 (1 −

d) sin 2θ . Thus, the current component that is parallel to
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d
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1
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f (θ , d)
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θ = π/2

π
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Γ = 0.45γ1

Γ = 0.35γ1

Γ = 0.25γ1

Γ = 0.15γ1

FIG. 8. (Color online) Results for the current injection in bilayer graphene with linearly polarized ω and 2ω beams. Left-hand side: The
disparity parameter d = η

xyyx

I /ηxxxx
I describing the asymmetry between parallel and perpendicular polarization axes, with �/γ1 = 0.15 (dotted

orange), 0.25 (short-dashed green), 0.35 (long-dashed blue), and 0.45 (plain red). Right-hand side: Polar plots of f (θ,d) and g(θ,d), the angular
distributions of the projections of J̇ parallel and perpendicular to ê2ω, as a function of the angle θ between the polarization vectors for d = −2,
−1, −0.5, 0, and 0.5. The shaded circles represent unit amplitude and dashed lines represent negative projections. The graphene prediction,
d = −1, is highlighted.

ê2ω has a nonseparable dependence on θ and d, whereas
the perpendicular component always follows sin 2θ . Polar
plots of the functions f (θ,d) and g(θ,d) are shown on the
right-hand side of Fig. 8 for d = −2, −1, −0.5, 0, and 0.5. Our
result for graphene (d = −1) yields a clover-shaped angular
distribution: the cos 2θ dependence in Eq. (18). For more (or
less) negative values of d, the lobes around θ = π

2 and 3π
2

become more (or less) important. At d = 0, these two lobes
vanish; any current injected with perpendicular ω and 2ω

polarization axes is completely perpendicular to ê2ω. For d > 0
there are no nodes in the angular distribution. For |d| > 1 the
current parallel to ê2ω is stronger for perpendicular polarization
axes compared to parallel polarization axes. By scanning the
photon energy in the range γ1 < 2h̄ω � 3γ1, the disparity
parameter d and thus the angular dependence of the current
injection in bilayer graphene vary significantly, in contrast
with the current injection in single-layer graphene. We note
in particular that the sharp changes in the value of d near
2h̄ω ≈ γ1 and 2h̄ω ≈ 2γ1 should be perceived experimentally
by rapid transitions in the angular dependence of the currents
as the photon energy is scanned.

V. SUMMARY AND DISCUSSION

We have calculated the response tensors for one- and
two-photon carrier injection and two-color current injection in
graphene and bilayer graphene. We find a strong, frequency-
independent linear-circular dichroism δ = −1 in the two-
photon response of graphene; for the bilayer, δ also equals −1
when 2h̄ω < γ1 or 2h̄ω � 3γ1, and changes sign when γ1 <

2h̄ω � 3γ1. Using the optical CC technique, in-plane currents
are generated for co-circularly polarized and linearly polarized
beams. Such currents could be detected in experiments making
use of contacts, or by detecting the emitted THz from the
accelerated charges as was demonstrated by Sun et al. in
epitaxially grown multilayer graphene.13 In the bilayer, the
dependence on the angle θ between linearly polarized light

components at ω and 2ω is strongly sensitive to the photon
energy for γ1 < 2h̄ω � 3γ1. This angular dependence is in
sharp contrast to the prediction for a single graphene layer,
and could be mapped out experimentally as a signature for
interlayer coupling in epitaxially grown multilayer graphene
samples, which are essentially thought of as uncoupled
graphene layers.23 We have assumed that the Fermi energy
is at the Dirac point, but for a nonzero Fermi energy EF , our
predictions hold for h̄ω > |EF |. When the Fermi energy varies
across an inhomogeneous sample, EF should be taken as the
largest local Fermi energy.

Our description of the bilayer considers only the strongest
of the interlayer coupling parameters, γ1, and excludes the
next-to-nearest coupling parameters γ3 and γ4. These terms
break the isotropy of the model and introduce trigonal
warping.5 However, we feel that excluding them in a first
calculation is justified. The inclusion of γ3 hardly changes the
conductivity spectrum.24 The same can be said of including
the next-to-nearest neighbor hoping term in the Hamiltonian
for graphene.25

A natural extension of the current model is to consider
AB-stacked multilayer graphene samples. Koshino and Ando
have shown that for n layers with n even, the Hamiltonian can
be decoupled into n/2 bilayers [with n odd, (n − 1)/2 bilayers,
and one decoupled single layer].26 Each bilayer pair has a
reduced coupling strength λmγ1 where λm = 2 cos κm and κm

is a wave vector in the stacking direction. The response of the
multilayer system is the sum of the bilayer system’s responses
with detuned coupling strengths. In the limit of a high number
of layers, the wave vector κ becomes a continuous variable
and there is a continuous spectrum of resonances, smearing
out the response tensor and eventually modeling the response
of bulk graphite.

In the present paper, spin and valley degrees of freedom
have contributed only degeneracy factors of 2 to the injection
tensors. But spin- or valley-polarized currents could also be
photogenerated if we first lifted the spin or valley degeneracy,
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for example in a sample subjected to a magnetic or pseu-
domagnetic field, provided that the Fermi energy is chosen
appropriately. Strain-induced pseudomagnetic fields have been
suggested to lift the degeneracy of the K and K ′ points by
100 meV.27,28

We conclude by pointing out the differences between
coherent current control in graphene and in conventional
semiconductors such as GaAs. In two-color CC experiments
in gapped semiconductors, the fields are typically chosen
so that the semiconducting bandgap Eg lies between h̄ω <

Eg < 2h̄ω. Thus, one-photon absorption at the fundamental
frequency is energetically forbidden. However, since the band
dispersions of graphene and bilayer graphene are gapless, for a
clean, unbiased sample there is a nonzero joint density of states
down to zero frequency and one-photon absorption is always
present. This raises an issue for two-color CC experiments
where the usual best practice is to have balanced absorption
between the first-order process at 2ω and the second-order
process at ω. To achieve this, the fundamental beam is given
most of the power. If this beam is absorbed in the linear regime,
it can potentially flood the sample with carriers that are not
taking part in the quantum interference. We note however that
this has not led to difficulties in observing the coherent current
control in multilayer epitaxial graphene.13

The opening of a sufficiently large gap in the band dis-
persion of graphene would completely eliminate one-photon

absorption at ω. The weak spin-orbit coupling offers only a
very small gap that has been calculated to be on the μeV
scale for graphene29,30 and bilayer graphene,31 while gaps
induced by the substrate15,32,33 or by confinement34,35 (in
certain nanoribbon geometries, similar to the way carbon
nanotubes can acquire a gap) are typically tens of meV. Most
interestingly, in bilayer graphene gap opening can also occur
due to z-axis asymmetry between the two layers, which can be
field induced.36 Field-induced gaps are tunable up to hundreds
of meV.

The problem of linear absorption of the fundamental could
also be circumvented by a nonzero Fermi energy EF , taking
advantage of Pauli blocking to prevent one-photon absorption
at ω. With the relation h̄ω/2 < |EF | < h̄ω, one effectively has
the same condition as typical gapped semiconductors. This
offers even more tunability since the Fermi energy can be
gate controlled, and could lead to novel electro-optical devices
making use of coherent current control.
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I (ω)Ea∗(ω)Eb∗(ω)Ec(2ω) + c.c. → ṅI =
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